Plasma Proteome Signature of Sepsis: a Functionally Connected Protein Network.

TitlePlasma Proteome Signature of Sepsis: a Functionally Connected Protein Network.
Publication TypeJournal Article
Year of Publication2019
AuthorsPimienta G, Heithoff DM, Rosa-Campos A, Tran M, Esko JD, Mahan MJ, Marth JD, Smith JW
JournalProteomics
Volume19
Issue5
Paginatione1800389
Date Published2019 Mar
ISSN1615-9861
Abstract

Sepsis is an extreme host response to infection that leads to loss of organ function and cardiovascular integrity. Mortality from sepsis is on the rise. Despite more than three decades of research and clinical trials, specific diagnostic and therapeutic strategies for sepsis are still absent. The use of LFQ- and TMT-based quantitative proteomics is reported here to study the plasma proteome in five mouse models of sepsis. A knowledge-based interpretation of the data reveals a protein network with extensive connectivity through documented functional or physical interactions. The individual proteins in the network all have a documented role in sepsis and are known to be extracellular. The changes in protein abundance observed in the mouse models of sepsis have for the most part the same directionality (increased or decreased abundance) as reported in the literature for human sepsis. This network has been named the Plasma Proteome Signature of Sepsis (PPSS). The PPSS is a quantifiable molecular readout that can supplant the current symptom-based approach used to diagnose sepsis. This type of molecular interpretation of sepsis, its progression, and its response to therapeutic intervention are an important step in advancing our understanding of sepsis, and for discovering and evaluating new therapeutic strategies.

DOI10.1002/pmic.201800389
Alternate JournalProteomics
PubMed ID30706660
Grant List / / NIH /
P01 HL131474 / HL / NHLBI NIH HHS / United States
R01 HL125352 / HL / NHLBI NIH HHS / United States